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xPONENT®

Logistic Curve Fitting
Technical Notes



Introduction

Immunoassays like all analytical methods give a fixed response 

to a given amount of analyte. The response units i.e. Median 

Fluorescent Intensity (MFI) must be converted into the proper 

units i.e. ng/ml. The conversion is achieved by the use of a 

standard curve. The standards that comprise the curve are a 

collection of samples of known and increasing concentration 

of the analyte in the matrix of interest. The standard curve is  

created with an equation relating assay response to  

sample concentration and is estimated from the responses of the  

standards.

Immunoassays are often characterized by non-linear  

relationships between the response and concentration of the  

analyte.  Curve fitting is a technique used to express the relationship  

between quantitative response and explanatory variables for 

those non-linear relationships; for example the relationship  

between MFI and molecular concentration. This relationship can 

be modeled in the form of a mathematical function. The model 

can be approximated by a straight line (linear) or a “nth” order 

polynomial and other forms.  

The actual response achieved for a given concentration of  

analyte may for many reasons vary with time, temperature,  

preparation, etc. The Luminex system allows for a very robust 

method to compensate for these variations by allowing the  

standardization process to be re-run every time data from  

a plate is acquired. This ensures that there is no significant  

effect on results due to the previously mentioned variables.

Luminex® xPONENT software is can utilize several 

different curve fitting formulas. The most popular are the  

Linear and Logistic regression methods.

Linear vs. Logistic Regression 

Although linear regression requires fewer data points or  

standards (as few as 3) compared to logistic regression  

(5PL requires 6 data points); a more accurate fit is obtained  

by using at least 6 points for any of the regression types  

(Motulsky 1996). Linear regression is rarely accurate enough 

for most antibody binding processes. The nature of the  

binding process depending on the chemistry involved is often  

significantly non-linear.

Figure A. Example of Linear Regression for the same immunoassay data as regressed in Figure B
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Figure A and B are respective examples of Linear and 5PL  

logistic curve fits for the same immunoassay data. It is  

obvious that the linear fit (Figure A) does not express the  

actual assay reaction properly and significant error in  

calculating actual concentration from the MFI response of an 

analyte results.

The goal of nonlinear regression or specifically Logistic  

Regression is to determine the best-fit parameters for a  

model by minimizing a chosen merit function. Where nonlinear  

regression differs from linear is that the model has a nonlinear  

dependence on the unknown parameters, and the process of  

merit function minimization is an iterative approach. The  

process starts with some initial estimates and then incorporates  

algorithms to improve the estimates iteratively. The new  

estimates then become a starting point for the next iteration. 

These iterations continue until the merit function effectively stops 

decreasing.

The nonlinear model to be fitted is represented by:

The merit function minimized in the regression is the following:

Where   is the measurement error or standard deviation  

of the ith data point. We are attempting to minimize the sum  

of the squares of the distances between the actual data points  

and the regression line.

Nonlinear regression iterations proceed as follows:

1. �Obtain initial estimates for all of the variables being fitted for 

in the model.   

2. �Using the initial estimates, compute the merit function.

3. �Use an algorithm to adjust the variables in order to improve 

the fit of the model to the data points. xPONENT utilizes the 

Levenberg-Marquardt method.  

4. �Again, compute the merit function and compare it to the  

previous iteration.

5. �Repeat steps 3 and 4 until there is essentially no change in the 

merit function, then cease the iterations.

6. Calculate the goodness of fit statistics.

Why is this a better method than linear regression? To start with, 

it is a much more general procedure. There are a very limited 

number of models that can be expressed in linear form without 

transforming the data. Also, remember that transforming the data 

means that the fitting routine will be minimizing the merit function 

on the transformed data, not the actual data.  

Figure B. Example of Logistic Regression for the same immunoassay data as regressed in Figure A
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Goodness of Fit Statistics:

It is critical to be able to determine when a fit is good enough.  

Statistical metrics are produced by xPONENT to provide a  

detailed view into the goodness of the curve fit. xPONENT  

produces 7 key metrics as shown in Figure C.

xPONENT Logistic Regression Statistical Metrics

1. �R^2 (R squared) or Coefficient of Multiple Determination:  

R^2 measures the proportion of variation in the data points 

which is explained by the regression model.  

 

	� Where    are the observed values for the dependent variable;  

     is the average of the observed values and         are predicted 

values for the dependent variable (the predicted values are 

calculated using the regression equation).

	� For example if R^2= 0.97, then 97% of the variation in 

the dependent or response variable is explained by the  

regression model.  In other words 97% of the variation of the  

concentration is explained by the variation in the response 

(MFI). A value of R^2=1.0 means that the curve passes through 

every standard data point. A value of R^2 = 0.0 means that the 

regression model does not describe the data any better than a 

horizontal line passing through the average of the data points.  

R^2 is not a good metric for distinguishing the goodness of a fit 

because even very poorly fitting curves can have a relatively 

high R^2. In Figure A, the R^2 of the linear regression is 0.94, 

but obviously the fit is quite poor since most of the standard 

points do not lie on the curve represented by a straight line. 

2. �Sum of Residuals: This is the total sum of    the residuals for 

all data points. If the curve    passed through each data point, 

the sum of residuals would be zero. A regression model can 

have large positive and negative residuals and still sum to a 

small number so this metric alone is not sufficient to determine 

the goodness of a fit.

3. �Average of Residuals: This is just the average of the 

residuals.

4. �RSSE: Residual or often called “Relative” sum of squares 

unlike R^2 measures how well the curve fits the individual data 

points.  

If the data is weighted, the RSSE is X^2 distributed and this  

probability makes a good metric.  xPONENT will display the 

RSSE in two forms as shown in the below with their equations.

Figure C.  Logistic Regression with 7 key metrics
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Pay close attention to this number as it is a good indicator of 

fit accuracy.  Two versions of this metric are calculated within  

xPONENT as described here below.   is the actual  

measured MFI for a particular standard and  is the predicted 

standard MFI.

Residual or Error Sum of Squares (Absolute) =  

Residual or Error Sum of Squares (Relative) =  

Where: 	                  normalized so that  

	 = the standard deviation of the ith data point  

	  is the number of data points or observation

a. �Relative Sum of Squares Absolute: The Relative (or  

Residual) Sum of Squares (RSS), is the sum of the squares  

of the differences between the entered data and the curve 

generated from the fitted regression model. A perfect fit  

would yield a relative sum of squares of 0.0.

b. �Relative Sum of Squares Relative: The Relative (or Residual) 

Sum of Squares (RSS), is the weighted sum of the squares 

of the differences between the entered data and the curve 

generated from the fitted regression model. A perfect fit would 

yield a relative sum of squares of 0.0. If the regression was 

not weighted the relative and absolute sum of squares will the 

equal.

5. �Standard Error of the Estimate: The Standard Error of the 

Estimate is the standard deviation of the differences between 

the entered data and the curve generated from the fitted  

model. This gives you an idea about how scattered the  

residuals are around the average. As the standard error  

approaches 0.0, you can be more certain that the regression 

model accurately describes the data. A perfect fit would yield 

a standard error of 0.0.

6. �Adjusted Coefficient of Multiple Determination: This 

is used to balance the cost of using a model with more  

parameters against the increase in R^2.

4PL vs 5PL Logistic regression non-linear models:  

The 4PL logistic method works best when the standard curve is 

symmetrical around its mid-point. When this requirement is not 

fulfilled the 4PL may give a poor fit to the data particularly around 

the asymptotes. The more general form of the logistic equation 

called a five parameter logistic (5PL) overcomes this problem.

	 Logistic 4P: y= a+ b/(1+((x/c)^d))

	 Logistic 5P: y= a+ (b/(1+((x/c)^d))^f)

	 a   - Estimated response at zero concentration 

	 b   - Estimated response at infinite concentration 

	 c   - Mid-range concentration (EC50)

	 d   - Slope factor (Hill Slope)

	 f    - Asymmetry factor

The f parameter present in the 5PL model but not in the 4PL  

allows for asymmetry correction when the curve response is not 

similar around the mid-point of the concentration range.
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Weighting the Curve:

Variance due to instrumentation variations, processing  

variations, and other unknown sources of influence are  

usually not evenly distributed through the standard curve. It  

is quite common in immunoassay and bioassay data for the  

error variance to be proportional to the magnitude of the  

response so that the errors are much larger where the respons-

es (in our case MFI) are greater. In many cases this is at the 

top of the curve where the concentration measurements are the  

highest. Conversely the errors are often smaller where the  

response is small i.e. where the concentrations are closest  

to zero and the observed response is closer to zero.  

An important reason that the variance of a standard is often a 

function of the response is because the kinetics associated with 

antibody binding are not linear so that the kinetic variations in the 

reaction change as the ratio of the analyte to tracer and binder 

changes (Wild 1994). This effect is known as heteroscedasticity 

and is evident in all fields of chemical and bioassays.  

By adjusting the response curve to compensate for this  

effect, substantially more accurate results can be achieved.  

xPONENT provides the popular 1/y^2 weighting schema as a user  

configurable option. Weights are assigned to each standard 

data point in order to compensate for the non-linear reaction  

characteristics. Points on the lower part of the curve will then 

have a more significant effect on the curve shape since these are 

considered more accurate while those on the higher point have 

less of an effect since these points are more error prone.

Extrapolation:

Extrapolation is required when concentrations must be estimated 

for points that are within calculatable limits but are outside of the 

range of standards inside of our standard curve.

Specifically the case of calculated concentration being less 

than the minimum standard expected concentration or if the  

calculated concentration is greater than the maximum standard 

expected concentration. Extrapolation can be a poor estimate 

of actual response especially since as the curve flattens small 

changes in the MFI values measured can results in very large 

changes in concentration.

Figure D illustrates several examples of extrapolation and  

interpolation with specific references as to how these  

instances are described on the xPONENT data grid  

and standard curve chart. 

Figure D. Extrapolations and Interpolations
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Extrapolation Interpolation Sample Explanation

As seen in Figure D

Sample 1 – The MFI does not intersect the curve (the MFI value 

is above the high asymptote of the curve); therefore, a numerical 

concentration result cannot be calculated. Instead, the result will  

be reported as “> (High Std Concentration)”, such as “>10,000”.

Sample 2 - The MFI intersects the curve; therefore, a 

numerical concentration result will be calculated, such as 10,707 

pg/ml. However, because the MFI of the sample is greater than 

the lowest replicate of the high standard, the sample concentration 

result will be flagged as extrapolated. Also note that depending on 

where the intersection occurs, it is possible to obtain results that  

are numerically greater than the expected concentration of the  

high standard. For example, in this case a result of 10,707 was 

obtained, even though the expected concentration of the high  

standard is only 10,000.  Also note, that for samples that do not  

intersect the curve, such as “Sample 1”, the result will be recorded  

as “>10,000”. Thus it is expected that some results may be reported  

with actual numbers greater than the expected concentration of  

the high standard, while other results may be reported simply  

as “> (High Std Concentration)”.

Sample 3 – The MFI intersects the curve; therefore, a 

numerical concentration result will be calculated, such as 9,599 pg/

ml. However, because the MFI of the sample is greater than the 

lowest replicate of the high standard, the sample concentration  

result will be flagged as extrapolated.

Sample 4 - The MFI intersects the curve; therefore, a 

numerical concentration result will be calculated, such as  

11.9 pg/ml. However, because the MFI of the sample is less than 

the highest replicate of the low standard, the sample concentration 

result will be flagged as extrapolated.

Sample 5 – The MFI intersects the curve; therefore, a 

numerical concentration result will be calculated, such as 8.3 pg/ml.  

However, because the MFI of the sample is less than the  

highest replicate of the low standard, the sample concentration  

result will be flagged as extrapolated. Also note that depending 

on where the intersection occurs, it is possible to obtain results  

that are numerically less than the expected concentration of  

the low standard. For example, in this case a result of 8.3 was  

obtained, even though the expected concentration of the low  

standard is only 10. Also note, that for samples that do not  

intersect the curve, such as “Sample 6”, the result will be recorded  

as “<10”. Thus it is expected that some results may be reported  

with actual numbers less than the expected concentration of the  

low standard, while other results may be reported simply as “< (Low  

Std Concentration)”.

Sample 6 –The MFI does not intersect the curve (the MFI value 

is below the low asymptote of the curve); therefore, a numerical 

concentration result cannot be calculated. Instead, the result will  

be reported as “< (Low Std Concentration)” such as “<10 pg/ml”.

Note: For samples in which the bead count does not meet the 

specified “Minimum bead count for obtaining results” value found 

in the “Batch Option” section of the Admin page, the result will be 

recorded as “NaN”, or Not a Number.
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